Skip to article frontmatterSkip to article content
Site not loading correctly?

This may be due to an incorrect BASE_URL configuration. See the MyST Documentation for reference.

Pretrained Models

Why UMA?
  1. State-of-the-art accuracy in out-of-domain prediction

  2. Total energy predictions which are helpful for properties beyond adsorption energies and removes ambiguity when catalyst surfaces may reconstruct

  3. Energy conserving and smooth (UMA small model) - works much better for vibrational calculations, molecular dynamics, etc.

  4. Most likely to be updated in the future


Legacy FAIRChemV1 Models Trained on Open Catalyst 2020 (OC20)

This page summarizes all the pretrained models released as part of the Open Catalyst Project.

S2EF models: optimized for EFwT

Model NameModelSplitDownloadval ID force MAE (eV / Å)val ID EFwT
CGCNN-S2EF-OC20-200kCGCNN200kcheckpoint | config0.080%
CGCNN-S2EF-OC20-2MCGCNN2Mcheckpoint | config0.06730.01%
CGCNN-S2EF-OC20-20MCGCNN20Mcheckpoint | config0.0650%
CGCNN-S2EF-OC20-AllCGCNNAllcheckpoint | config0.06840.01%
DimeNet-S2EF-OC20-200kDimeNet200kcheckpoint0.06930.01%
DimeNet-S2EF-OC20-2MDimeNet2Mcheckpoint0.05760.02%
SchNet-S2EF-OC20-200kSchNet200kcheckpoint | config0.07430%
SchNet-S2EF-OC20-2MSchNet2Mcheckpoint | config0.07370%
SchNet-S2EF-OC20-20MSchNet20Mcheckpoint | config0.05680.03%
SchNet-S2EF-OC20-AllSchNetAllcheckpoint | config0.04940.12%
DimeNet++-S2EF-OC20-200kDimeNet++200kcheckpoint | config0.07410%
DimeNet++-S2EF-OC20-2MDimeNet++2Mcheckpoint | config0.05950.01%
DimeNet++-S2EF-OC20-20MDimeNet++20Mcheckpoint | config0.05110.06%
DimeNet++-S2EF-OC20-AllDimeNet++Allcheckpoint | config0.04440.12%
SpinConv-S2EF-OC20-2MSpinConv2Mcheckpoint | config0.03290.18%
SpinConv-S2EF-OC20-AllSpinConvAllcheckpoint | config0.02671.02%
GemNet-dT-S2EF-OC20-2MGemNet-dT2Mcheckpoint | config0.02571.10%
GemNet-dT-S2EF-OC20-AllGemNet-dTAllcheckpoint | config0.02112.21%
PaiNN-S2EF-OC20-AllPaiNNAllcheckpoint | config | scale file0.02940.91%
GemNet-OC-S2EF-OC20-2MGemNet-OC2Mcheckpoint | config | scale file0.02252.12%
GemNet-OC-S2EF-OC20-AllGemNet-OCAllcheckpoint | config | scale file0.01794.56%
GemNet-OC-S2EF-OC20-All+MDGemNet-OCAll+MDcheckpoint | config | scale file0.01734.72%
GemNet-OC-Large-S2EF-OC20-All+MDGemNet-OC-LargeAll+MDcheckpoint | config | scale file0.01645.34%
SCN-S2EF-OC20-2MSCN2Mcheckpoint | config0.02161.68%
SCN-t4-b2-S2EF-OC20-2MSCN-t4-b22Mcheckpoint | config0.01932.68%
SCN-S2EF-OC20-All+MDSCNAll+MDcheckpoint | config0.01605.08%
eSCN-L4-M2-Lay12-S2EF-OC20-2MeSCN-L4-M2-Lay122Mcheckpoint | config0.01912.55%
eSCN-L6-M2-Lay12-S2EF-OC20-2MeSCN-L6-M2-Lay122Mcheckpoint | config | exported0.01862.66%
eSCN-L6-M2-Lay12-S2EF-OC20-All+MDeSCN-L6-M2-Lay12All+MDcheckpoint | config0.01614.28%
eSCN-L6-M3-Lay20-S2EF-OC20-All+MDeSCN-L6-M3-Lay20All+MDcheckpoint | config0.01396.64%
EquiformerV2-83M-S2EF-OC20-2MEquiformerV2 (83M)2Mcheckpoint | config0.01674.26%
EquiformerV2-31M-S2EF-OC20-All+MDEquiformerV2 (31M)All+MDcheckpoint | config0.01426.20%
EquiformerV2-153M-S2EF-OC20-All+MDEquiformerV2 (153M)All+MDcheckpoint | config0.01268.90%

S2EF models: optimized for force only

Model NameModelSplitDownloadval ID force MAE
SchNet-S2EF-force-only-OC20-AllSchNetAllcheckpoint0.0443
DimeNet++-force-only-OC20-AllDimeNet++Allcheckpoint | config0.0334
DimeNet++-Large-S2EF-force-only-OC20-AllDimeNet++-LargeAllcheckpoint | config0.02825
DimeNet++-S2EF-force-only-OC20-20M+RattledDimeNet++20M+Rattledcheckpoint0.0614
DimeNet++-S2EF-force-only-OC20-20M+MDDimeNet++20M+MDcheckpoint0.0594

IS2RE models

Model NameModelSplitDownloadval ID energy MAE
CGCNN-IS2RE-OC20-10kCGCNN10kcheckpoint | config0.9881
CGCNN-IS2RE-OC20-100kCGCNN100kcheckpoint | config0.682
CGCNN-IS2RE-OC20-AllCGCNNAllcheckpoint | config0.6199
DimeNet-IS2RE-OC20-10kDimeNet10kcheckpoint1.0117
DimeNet-IS2RE-OC20-100kDimeNet100kcheckpoint0.6658
DimeNet-IS2RE-OC20-allDimeNetAllcheckpoint0.5999
SchNet-IS2RE-OC20-10kSchNet10kcheckpoint | config1.059
SchNet-IS2RE-OC20-100kSchNet100kcheckpoint | config0.7137
SchNet-IS2RE-OC20-AllSchNetAllcheckpoint | config0.6458
DimeNet++-IS2RE-OC20-10kDimeNet++10kcheckpoint | config0.8837
DimeNet++-IS2RE-OC20-100kDimeNet++100kcheckpoint | config0.6388
DimeNet++-IS2RE-OC20-AllDimeNet++Allcheckpoint | config0.5639
PaiNN-IS2RE-OC20-AllPaiNNAllcheckpoint | config | scale file0.5728

The Open Catalyst 2020 (OC20) dataset is licensed under a Creative Commons Attribution 4.0 License.

Please consider citing the following paper in any research manuscript using the OC20 dataset or pretrained models, as well as the original paper for each model:

@article{ocp_dataset,
    author = {Chanussot*, Lowik and Das*, Abhishek and Goyal*, Siddharth and Lavril*, Thibaut and Shuaibi*, Muhammed and Riviere, Morgane and Tran, Kevin and Heras-Domingo, Javier and Ho, Caleb and Hu, Weihua and Palizhati, Aini and Sriram, Anuroop and Wood, Brandon and Yoon, Junwoong and Parikh, Devi and Zitnick, C. Lawrence and Ulissi, Zachary},
    title = {Open Catalyst 2020 (OC20) Dataset and Community Challenges},
    journal = {ACS Catalysis},
    year = {2021},
    doi = {10.1021/acscatal.0c04525},
}

Open Catalyst 2022 (OC22)

S2EF-Total models

Model NameModelTrainingDownloadval ID force MAEval ID energy MAE
GemNet-dT-S2EFS-OC22GemNet-dTOC22checkpoint | config0.0321.127
GemNet-OC-S2EFS-OC22GemNet-OCOC22checkpoint | config0.0300.563
GemNet-OC-S2EFS-OC20+OC22GemNet-OCOC20+OC22checkpoint | config0.0270.483
GemNet-OC-S2EFS-nsn-OC20+OC22GemNet-OC
(trained with enforce_max_neighbors_strictly=False , #467 )
OC20+OC22checkpoint | config0.0270.458
GemNet-OC-S2EFS-OC20->OC22GemNet-OCOC20->OC22checkpoint | config0.0300.417
EquiformerV2-lE4-lF100-S2EFS-OC22EquiformerV2 (λE\lambda_E=4, λF\lambda_F=100)OC22checkpoint | config0.0230.447

The Open Catalyst 2022 (OC22) dataset is licensed under a Creative Commons Attribution 4.0 License.

Please consider citing the following paper in any research manuscript using the OC22 dataset or pretrained models, as well as the original paper for each model:

@article{oc22_dataset,
    author = {Tran*, Richard and Lan*, Janice and Shuaibi*, Muhammed and Wood*, Brandon and Goyal*, Siddharth and Das, Abhishek and Heras-Domingo, Javier and Kolluru, Adeesh and Rizvi, Ammar and Shoghi, Nima and Sriram, Anuroop and Ulissi, Zachary and Zitnick, C. Lawrence},
    title = {The Open Catalyst 2022 (OC22) dataset and challenges for oxide electrocatalysts},
    journal = {ACS Catalysis},
    year={2023},
}