core.models.equiformer_v2.gaussian_rbf#
Classes#
Base class for all neural network modules. |
Functions#
|
Module Contents#
- core.models.equiformer_v2.gaussian_rbf.gaussian(x: torch.Tensor, mean, std) torch.Tensor #
- class core.models.equiformer_v2.gaussian_rbf.GaussianRadialBasisLayer(num_basis: int, cutoff: float)#
Bases:
torch.nn.Module
Base class for all neural network modules.
Your models should also subclass this class.
Modules can also contain other Modules, allowing to nest them in a tree structure. You can assign the submodules as regular attributes:
import torch.nn as nn import torch.nn.functional as F class Model(nn.Module): def __init__(self): super().__init__() self.conv1 = nn.Conv2d(1, 20, 5) self.conv2 = nn.Conv2d(20, 20, 5) def forward(self, x): x = F.relu(self.conv1(x)) return F.relu(self.conv2(x))
Submodules assigned in this way will be registered, and will have their parameters converted too when you call
to()
, etc.Note
As per the example above, an
__init__()
call to the parent class must be made before assignment on the child.- Variables:
training (bool) – Boolean represents whether this module is in training or evaluation mode.
- num_basis#
- cutoff#
- mean#
- std#
- weight#
- bias#
- std_init_max = 1.0#
- std_init_min#
- mean_init_max = 1.0#
- mean_init_min = 0#
- forward(dist: torch.Tensor, node_atom=None, edge_src=None, edge_dst=None)#
- extra_repr()#
Set the extra representation of the module.
To print customized extra information, you should re-implement this method in your own modules. Both single-line and multi-line strings are acceptable.