core.models.equiformer_v2.layer_norm

Contents

core.models.equiformer_v2.layer_norm#

1. Normalize features of shape (N, sphere_basis, C), with sphere_basis = (lmax + 1) ** 2.

2. The difference from layer_norm.py is that all type-L vectors have the same number of channels and input features are of shape (N, sphere_basis, C).

Classes#

Functions#

get_normalization_layer(norm_type, lmax, num_channels)

get_l_to_all_m_expand_index(lmax)

Module Contents#

core.models.equiformer_v2.layer_norm.get_normalization_layer(norm_type: str, lmax: int, num_channels: int, eps: float = 1e-05, affine: bool = True, normalization: str = 'component')#
core.models.equiformer_v2.layer_norm.get_l_to_all_m_expand_index(lmax: int)#
class core.models.equiformer_v2.layer_norm.EquivariantLayerNormArray(lmax: int, num_channels: int, eps: float = 1e-05, affine: bool = True, normalization: str = 'component')#

Bases: torch.nn.Module

Base class for all neural network modules.

Your models should also subclass this class.

Modules can also contain other Modules, allowing to nest them in a tree structure. You can assign the submodules as regular attributes:

import torch.nn as nn
import torch.nn.functional as F

class Model(nn.Module):
    def __init__(self):
        super().__init__()
        self.conv1 = nn.Conv2d(1, 20, 5)
        self.conv2 = nn.Conv2d(20, 20, 5)

    def forward(self, x):
        x = F.relu(self.conv1(x))
        return F.relu(self.conv2(x))

Submodules assigned in this way will be registered, and will have their parameters converted too when you call to(), etc.

Note

As per the example above, an __init__() call to the parent class must be made before assignment on the child.

Variables:

training (bool) – Boolean represents whether this module is in training or evaluation mode.

lmax#
num_channels#
eps#
affine#
normalization#
__repr__() str#
forward(node_input)#

Assume input is of shape [N, sphere_basis, C]

class core.models.equiformer_v2.layer_norm.EquivariantLayerNormArraySphericalHarmonics(lmax: int, num_channels: int, eps: float = 1e-05, affine: bool = True, normalization: str = 'component', std_balance_degrees: bool = True)#

Bases: torch.nn.Module

  1. Normalize over L = 0.

  2. Normalize across all m components from degrees L > 0.

  3. Do not normalize separately for different L (L > 0).

lmax#
num_channels#
eps#
affine#
std_balance_degrees#
norm_l0#
normalization#
__repr__() str#
forward(node_input)#

Assume input is of shape [N, sphere_basis, C]

class core.models.equiformer_v2.layer_norm.EquivariantRMSNormArraySphericalHarmonics(lmax: int, num_channels: int, eps: float = 1e-05, affine: bool = True, normalization: str = 'component')#

Bases: torch.nn.Module

  1. Normalize across all m components from degrees L >= 0.

lmax#
num_channels#
eps#
affine#
normalization#
__repr__() str#
forward(node_input)#

Assume input is of shape [N, sphere_basis, C]

class core.models.equiformer_v2.layer_norm.EquivariantRMSNormArraySphericalHarmonicsV2(lmax: int, num_channels: int, eps: float = 1e-05, affine: bool = True, normalization: str = 'component', centering: bool = True, std_balance_degrees: bool = True)#

Bases: torch.nn.Module

  1. Normalize across all m components from degrees L >= 0.

  2. Expand weights and multiply with normalized feature to prevent slicing and concatenation.

lmax#
num_channels#
eps#
affine#
centering#
std_balance_degrees#
normalization#
__repr__() str#
forward(node_input)#

Assume input is of shape [N, sphere_basis, C]

class core.models.equiformer_v2.layer_norm.EquivariantDegreeLayerScale(lmax: int, num_channels: int, scale_factor: float = 2.0)#

Bases: torch.nn.Module

  1. Similar to Layer Scale used in CaiT (Going Deeper With Image Transformers (ICCV’21)), we scale the output of both attention and FFN.

  2. For degree L > 0, we scale down the square root of 2 * L, which is to emulate halving the number of channels when using higher L.

lmax#
num_channels#
scale_factor#
affine_weight#
__repr__() str#
forward(node_input)#