core.models.equiformer_v2.so3

Contents

core.models.equiformer_v2.so3#

Copyright (c) Meta, Inc. and its affiliates.

This source code is licensed under the MIT license found in the LICENSE file in the root directory of this source tree.

Classes#

CoefficientMappingModule

Helper module for coefficients used to reshape lval <--> m and to get coefficients of specific degree or order

SO3_Embedding

Helper functions for performing operations on irreps embedding

SO3_Rotation

Helper functions for Wigner-D rotations

SO3_Grid

Helper functions for grid representation of the irreps

SO3_Linear

Base class for all neural network modules.

SO3_LinearV2

Base class for all neural network modules.

Module Contents#

class core.models.equiformer_v2.so3.CoefficientMappingModule(lmax_list: list[int], mmax_list: list[int])#

Bases: torch.nn.Module

Helper module for coefficients used to reshape lval <–> m and to get coefficients of specific degree or order

Parameters:
  • (list (mmax_list) – int): List of maximum degree of the spherical harmonics

  • (list – int): List of maximum order of the spherical harmonics

lmax_list#
mmax_list#
num_resolutions#
device = 'cpu'#
mask_indices_cache = None#
rotate_inv_rescale_cache = None#
complex_idx(m: int, lmax: int, m_complex, l_harmonic)#

Add m_complex and l_harmonic to the input arguments since we cannot use self.m_complex.

coefficient_idx(lmax: int, mmax: int)#
get_rotate_inv_rescale(lmax: int, mmax: int)#
__repr__() str#
class core.models.equiformer_v2.so3.SO3_Embedding(length: int, lmax_list: list[int], num_channels: int, device: torch.device, dtype: torch.dtype)#

Helper functions for performing operations on irreps embedding

Parameters:
  • length (int) – Batch size

  • (list (lmax_list) – int): List of maximum degree of the spherical harmonics

  • num_channels (int) – Number of channels

  • device – Device of the output

  • dtype – type of the output tensors

num_channels#
device#
dtype#
num_resolutions#
num_coefficients = 0#
clone() SO3_Embedding#
set_embedding(embedding) None#
set_lmax_mmax(lmax_list: list[int], mmax_list: list[int]) None#
_expand_edge(edge_index: torch.Tensor) None#
expand_edge(edge_index: torch.Tensor)#
_reduce_edge(edge_index: torch.Tensor, num_nodes: int)#
_m_primary(mapping)#
_l_primary(mapping)#
_rotate(SO3_rotation, lmax_list: list[int], mmax_list: list[int])#
_rotate_inv(SO3_rotation, mappingReduced)#
_grid_act(SO3_grid, act, mappingReduced)#
to_grid(SO3_grid, lmax=-1)#
_from_grid(x_grid, SO3_grid, lmax: int = -1)#
class core.models.equiformer_v2.so3.SO3_Rotation(lmax: int)#

Bases: torch.nn.Module

Helper functions for Wigner-D rotations

Parameters:

(list (lmax_list) – int): List of maximum degree of the spherical harmonics

lmax#
mapping#
set_wigner(rot_mat3x3)#
rotate(embedding, out_lmax: int, out_mmax: int)#
rotate_inv(embedding, in_lmax: int, in_mmax: int)#
RotationToWignerDMatrix(edge_rot_mat, start_lmax: int, end_lmax: int) torch.Tensor#
class core.models.equiformer_v2.so3.SO3_Grid(lmax: int, mmax: int, normalization: str = 'integral', resolution: int | None = None)#

Bases: torch.nn.Module

Helper functions for grid representation of the irreps

Parameters:
  • lmax (int) – Maximum degree of the spherical harmonics

  • mmax (int) – Maximum order of the spherical harmonics

lmax#
mmax#
lat_resolution#
mapping#
get_to_grid_mat(device)#
get_from_grid_mat(device)#
to_grid(embedding, lmax: int, mmax: int)#
from_grid(grid, lmax: int, mmax: int)#
class core.models.equiformer_v2.so3.SO3_Linear(in_features: int, out_features: int, lmax: int, bias: bool = True)#

Bases: torch.nn.Module

Base class for all neural network modules.

Your models should also subclass this class.

Modules can also contain other Modules, allowing to nest them in a tree structure. You can assign the submodules as regular attributes:

import torch.nn as nn
import torch.nn.functional as F

class Model(nn.Module):
    def __init__(self):
        super().__init__()
        self.conv1 = nn.Conv2d(1, 20, 5)
        self.conv2 = nn.Conv2d(20, 20, 5)

    def forward(self, x):
        x = F.relu(self.conv1(x))
        return F.relu(self.conv2(x))

Submodules assigned in this way will be registered, and will have their parameters converted too when you call to(), etc.

Note

As per the example above, an __init__() call to the parent class must be made before assignment on the child.

Variables:

training (bool) – Boolean represents whether this module is in training or evaluation mode.

in_features#
out_features#
lmax#
linear_list#
forward(input_embedding, output_scale=None)#
__repr__() str#
class core.models.equiformer_v2.so3.SO3_LinearV2(in_features: int, out_features: int, lmax: int, bias: bool = True)#

Bases: torch.nn.Module

Base class for all neural network modules.

Your models should also subclass this class.

Modules can also contain other Modules, allowing to nest them in a tree structure. You can assign the submodules as regular attributes:

import torch.nn as nn
import torch.nn.functional as F

class Model(nn.Module):
    def __init__(self):
        super().__init__()
        self.conv1 = nn.Conv2d(1, 20, 5)
        self.conv2 = nn.Conv2d(20, 20, 5)

    def forward(self, x):
        x = F.relu(self.conv1(x))
        return F.relu(self.conv2(x))

Submodules assigned in this way will be registered, and will have their parameters converted too when you call to(), etc.

Note

As per the example above, an __init__() call to the parent class must be made before assignment on the child.

Variables:

training (bool) – Boolean represents whether this module is in training or evaluation mode.

in_features#
out_features#
lmax#
weight#
bias#
forward(input_embedding)#
__repr__() str#