core.models.gemnet_oc.layers.radial_basis#
Copyright (c) Meta, Inc. and its affiliates. This source code is licensed under the MIT license found in the LICENSE file in the root directory of this source tree.
Classes#
Polynomial envelope function that ensures a smooth cutoff. |
|
Exponential envelope function that ensures a smooth cutoff, |
|
Base class for all neural network modules. |
|
First-order spherical Bessel basis |
|
Bernstein polynomial basis, |
|
Module Contents#
- class core.models.gemnet_oc.layers.radial_basis.PolynomialEnvelope(exponent: int)#
Bases:
torch.nn.Module
Polynomial envelope function that ensures a smooth cutoff.
- Parameters:
exponent (int) – Exponent of the envelope function.
- p#
- a: float#
- b: float#
- c: float#
- forward(d_scaled: torch.Tensor) torch.Tensor #
- class core.models.gemnet_oc.layers.radial_basis.ExponentialEnvelope#
Bases:
torch.nn.Module
Exponential envelope function that ensures a smooth cutoff, as proposed in Unke, Chmiela, Gastegger, Schütt, Sauceda, Müller 2021. SpookyNet: Learning Force Fields with Electronic Degrees of Freedom and Nonlocal Effects
- forward(d_scaled: torch.Tensor) torch.Tensor #
- class core.models.gemnet_oc.layers.radial_basis.GaussianBasis(start: float = 0.0, stop: float = 5.0, num_gaussians: int = 50, trainable: bool = False)#
Bases:
torch.nn.Module
Base class for all neural network modules.
Your models should also subclass this class.
Modules can also contain other Modules, allowing to nest them in a tree structure. You can assign the submodules as regular attributes:
import torch.nn as nn import torch.nn.functional as F class Model(nn.Module): def __init__(self): super().__init__() self.conv1 = nn.Conv2d(1, 20, 5) self.conv2 = nn.Conv2d(20, 20, 5) def forward(self, x): x = F.relu(self.conv1(x)) return F.relu(self.conv2(x))
Submodules assigned in this way will be registered, and will have their parameters converted too when you call
to()
, etc.Note
As per the example above, an
__init__()
call to the parent class must be made before assignment on the child.- Variables:
training (bool) – Boolean represents whether this module is in training or evaluation mode.
- coeff#
- forward(dist: torch.Tensor) torch.Tensor #
- class core.models.gemnet_oc.layers.radial_basis.SphericalBesselBasis(num_radial: int, cutoff: float)#
Bases:
torch.nn.Module
First-order spherical Bessel basis
- Parameters:
num_radial (int) – Number of basis functions. Controls the maximum frequency.
cutoff (float) – Cutoff distance in Angstrom.
- norm_const#
- frequencies#
- forward(d_scaled: torch.Tensor) torch.Tensor #
- class core.models.gemnet_oc.layers.radial_basis.BernsteinBasis(num_radial: int, pregamma_initial: float = 0.45264)#
Bases:
torch.nn.Module
Bernstein polynomial basis, as proposed in Unke, Chmiela, Gastegger, Schütt, Sauceda, Müller 2021. SpookyNet: Learning Force Fields with Electronic Degrees of Freedom and Nonlocal Effects
- Parameters:
num_radial (int) – Number of basis functions. Controls the maximum frequency.
pregamma_initial (float) – Initial value of exponential coefficient gamma. Default: gamma = 0.5 * a_0**-1 = 0.94486, inverse softplus -> pregamma = log e**gamma - 1 = 0.45264
- pregamma#
- softplus#
- forward(d_scaled: torch.Tensor) torch.Tensor #
- class core.models.gemnet_oc.layers.radial_basis.RadialBasis(num_radial: int, cutoff: float, rbf: dict[str, str] | None = None, envelope: dict[str, str | int] | None = None, scale_basis: bool = False)#
Bases:
torch.nn.Module
- Parameters:
num_radial (int) – Number of basis functions. Controls the maximum frequency.
cutoff (float) – Cutoff distance in Angstrom.
rbf (dict = {"name": "gaussian"}) – Basis function and its hyperparameters.
envelope (dict = {"name": "polynomial", "exponent": 5}) – Envelope function and its hyperparameters.
scale_basis (bool) – Whether to scale the basis values for better numerical stability.
- inv_cutoff#
- scale_basis#
- forward(d: torch.Tensor) torch.Tensor #