core.trainers#

Submodules#

Classes#

BaseTrainer

Helper class that provides a standard way to create an ABC using

OCPTrainer

Trainer class for the Structure to Energy & Force (S2EF) and Initial State to

Package Contents#

class core.trainers.BaseTrainer(task: dict[str, str | Any], model: dict[str, Any], outputs: dict[str, str | int], dataset: dict[str, str | float], optimizer: dict[str, str | float], loss_functions: dict[str, str | float], evaluation_metrics: dict[str, str], identifier: str, local_rank: int, timestamp_id: str | None = None, run_dir: str | None = None, is_debug: bool = False, print_every: int = 100, seed: int | None = None, logger: str = 'wandb', amp: bool = False, cpu: bool = False, name: str = 'ocp', slurm=None, gp_gpus: int | None = None, inference_only: bool = False)#

Bases: abc.ABC

Helper class that provides a standard way to create an ABC using inheritance.

name#
is_debug#
cpu#
epoch = 0#
step = 0#
ema = None#
timestamp_id: str#
config#
scaler#
elementrefs#
normalizers#
train_dataset = None#
val_dataset = None#
test_dataset = None#
best_val_metric = None#
primary_metric = None#
abstract train(disable_eval_tqdm: bool = False) None#

Run model training iterations.

static _get_timestamp(device: torch.device, suffix: str | None) str#
load(inference_only: bool) None#
static set_seed(seed) None#
load_seed_from_config() None#
load_logger() None#
get_sampler(dataset, batch_size: int, shuffle: bool) fairchem.core.common.data_parallel.BalancedBatchSampler#
get_dataloader(dataset, sampler, workers=None) torch.utils.data.DataLoader#
load_datasets() None#
load_references_and_normalizers()#

Load or create element references and normalizers from config

load_task()#
load_model() None#
property _unwrapped_model#
load_checkpoint(checkpoint_path: str, checkpoint: dict | None = None, inference_only: bool = False) None#
load_loss() None#
load_optimizer() None#
load_extras() None#
save(metrics=None, checkpoint_file: str = 'checkpoint.pt', training_state: bool = True) str | None#
update_best(primary_metric, val_metrics, disable_eval_tqdm: bool = True) None#
_aggregate_metrics(metrics)#
validate(split: str = 'val', disable_tqdm: bool = False)#
_backward(loss) None#
save_results(predictions: dict[str, numpy.typing.NDArray], results_file: str | None, keys: collections.abc.Sequence[str] | None = None) None#
class core.trainers.OCPTrainer(task: dict[str, str | Any], model: dict[str, Any], outputs: dict[str, str | int], dataset: dict[str, str | float], optimizer: dict[str, str | float], loss_functions: dict[str, str | float], evaluation_metrics: dict[str, str], identifier: str, local_rank: int, timestamp_id: str | None = None, run_dir: str | None = None, is_debug: bool = False, print_every: int = 100, seed: int | None = None, logger: str = 'wandb', amp: bool = False, cpu: bool = False, name: str = 'ocp', slurm: dict | None = None, gp_gpus: int | None = None, inference_only: bool = False)#

Bases: fairchem.core.trainers.base_trainer.BaseTrainer

Trainer class for the Structure to Energy & Force (S2EF) and Initial State to Relaxed State (IS2RS) tasks.

Note

Examples of configurations for task, model, dataset and optimizer can be found in configs/ocp_s2ef and configs/ocp_is2rs.

Parameters:
  • task (dict) – Task configuration.

  • model (dict) – Model configuration.

  • outputs (dict) – Dictionary of model output configuration.

  • dataset (dict) – Dataset configuration. The dataset needs to be a SinglePointLMDB dataset.

  • optimizer (dict) – Optimizer configuration.

  • loss_functions (dict) – Loss function configuration.

  • evaluation_metrics (dict) – Evaluation metrics configuration.

  • identifier (str) – Experiment identifier that is appended to log directory.

  • run_dir (str, optional) – Path to the run directory where logs are to be saved. (default: None)

  • timestamp_id (str, optional) – timestamp identifier.

  • run_dir – Run directory used to save checkpoints and results.

  • is_debug (bool, optional) – Run in debug mode. (default: False)

  • print_every (int, optional) – Frequency of printing logs. (default: 100)

  • seed (int, optional) – Random number seed. (default: None)

  • logger (str, optional) – Type of logger to be used. (default: wandb)

  • local_rank (int, optional) – Local rank of the process, only applicable for distributed training. (default: 0)

  • amp (bool, optional) – Run using automatic mixed precision. (default: False)

  • cpu (bool) – If True will run on CPU. Default is False, will attempt to use cuda.

  • name (str) – Trainer name.

  • slurm (dict) – Slurm configuration. Currently just for keeping track. (default: {})

  • gp_gpus (int, optional) – Number of graph parallel GPUs.

  • inference_only (bool) – If true trainer will be loaded for inference only. (ie datasets, optimizer, schedular, etc, will not be instantiated)

train(disable_eval_tqdm: bool = False) None#

Run model training iterations.

_denorm_preds(target_key: str, prediction: torch.Tensor, batch: torch_geometric.data.Batch)#

Convert model output from a batch into raw prediction by denormalizing and adding references

_forward(batch)#
_compute_loss(out, batch) torch.Tensor#
_compute_metrics(out, batch, evaluator, metrics=None)#
predict(data_loader, per_image: bool = True, results_file: str | None = None, disable_tqdm: bool = False)#
run_relaxations()#