core.modules.scaling#
Submodules#
Classes#
Base class for all neural network modules. |
Package Contents#
- class core.modules.scaling.ScaleFactor(name: str | None = None, enforce_consistency: bool = True)#
Bases:
torch.nn.Module
Base class for all neural network modules.
Your models should also subclass this class.
Modules can also contain other Modules, allowing to nest them in a tree structure. You can assign the submodules as regular attributes:
import torch.nn as nn import torch.nn.functional as F class Model(nn.Module): def __init__(self): super().__init__() self.conv1 = nn.Conv2d(1, 20, 5) self.conv2 = nn.Conv2d(20, 20, 5) def forward(self, x): x = F.relu(self.conv1(x)) return F.relu(self.conv2(x))
Submodules assigned in this way will be registered, and will have their parameters converted too when you call
to()
, etc.Note
As per the example above, an
__init__()
call to the parent class must be made before assignment on the child.- Variables:
training (bool) – Boolean represents whether this module is in training or evaluation mode.
- scale_factor: torch.Tensor#
- name: str | None = None#
- index_fn: IndexFn | None = None#
- _enforce_consistency(state_dict, prefix, _local_metadata, _strict, _missing_keys, _unexpected_keys, _error_msgs) None #
- property fitted: bool#
- reset_() None #
- set_(scale: float | torch.Tensor) None #
- initialize_(*, index_fn: IndexFn | None = None) None #
- fit_context_()#
- fit_()#
- _observe(x: torch.Tensor, ref: torch.Tensor | None = None) None #
- forward(x: torch.Tensor, *, ref: torch.Tensor | None = None) torch.Tensor #