core.calculate.pretrained_mlip#

Copyright (c) Meta Platforms, Inc. and affiliates.

This source code is licensed under the MIT license found in the LICENSE file in the root directory of this source tree.

Attributes#

Classes#

Functions#

get_predict_unit(...)

Retrieves a prediction unit for a specified model.

Module Contents#

class core.calculate.pretrained_mlip.HuggingFaceCheckpoint#
filename: str#
repo_id: Literal['facebook/UMA']#
subfolder: str | None = None#
revision: str | None = None#
class core.calculate.pretrained_mlip.PretrainedModels#
checkpoints: dict[str, HuggingFaceCheckpoint]#
core.calculate.pretrained_mlip._MODEL_CKPTS#
core.calculate.pretrained_mlip.available_models#
core.calculate.pretrained_mlip.get_predict_unit(model_name: str, inference_settings: fairchem.core.units.mlip_unit.InferenceSettings | str = 'default', overrides: dict | None = None, device: str = 'cuda') fairchem.core.units.mlip_unit.MLIPPredictUnit#

Retrieves a prediction unit for a specified model.

Parameters:
  • model_name – Name of the model to load from available pretrained models.

  • inference_settings – Settings for inference. Can be “default” (general purpose) or “turbo” (optimized for speed but requires fixed atomic composition). Advanced use cases can use a custom InferenceSettings object.

  • overrides – Optional dictionary of settings to override default inference settings.

  • device – Optional torch device to load the model onto. If None, uses the default device.

Returns:

An initialized MLIPPredictUnit ready for making predictions.

Raises:

KeyError – If the specified model_name is not found in available models.