core.models.gemnet.layers.radial_basis#
Copyright (c) Meta, Inc. and its affiliates.
This source code is licensed under the MIT license found in the LICENSE file in the root directory of this source tree.
Classes#
Polynomial envelope function that ensures a smooth cutoff. |
|
Exponential envelope function that ensures a smooth cutoff, |
|
1D spherical Bessel basis |
|
Bernstein polynomial basis, |
|
Module Contents#
- class core.models.gemnet.layers.radial_basis.PolynomialEnvelope(exponent: int)#
Bases:
torch.nn.Module
Polynomial envelope function that ensures a smooth cutoff.
- Parameters:
exponent (int) – Exponent of the envelope function.
- p: float#
- a: float#
- b: float#
- c: float#
- forward(d_scaled: torch.Tensor) torch.Tensor #
- class core.models.gemnet.layers.radial_basis.ExponentialEnvelope#
Bases:
torch.nn.Module
Exponential envelope function that ensures a smooth cutoff, as proposed in Unke, Chmiela, Gastegger, Schütt, Sauceda, Müller 2021. SpookyNet: Learning Force Fields with Electronic Degrees of Freedom and Nonlocal Effects
- forward(d_scaled: torch.Tensor) torch.Tensor #
- class core.models.gemnet.layers.radial_basis.SphericalBesselBasis(num_radial: int, cutoff: float)#
Bases:
torch.nn.Module
1D spherical Bessel basis
- Parameters:
num_radial (int) – Controls maximum frequency.
cutoff (float) – Cutoff distance in Angstrom.
- norm_const#
- frequencies#
- forward(d_scaled: torch.Tensor) torch.Tensor #
- class core.models.gemnet.layers.radial_basis.BernsteinBasis(num_radial: int, pregamma_initial: float = 0.45264)#
Bases:
torch.nn.Module
Bernstein polynomial basis, as proposed in Unke, Chmiela, Gastegger, Schütt, Sauceda, Müller 2021. SpookyNet: Learning Force Fields with Electronic Degrees of Freedom and Nonlocal Effects
- Parameters:
num_radial (int) – Controls maximum frequency.
pregamma_initial (float) – Initial value of exponential coefficient gamma. Default: gamma = 0.5 * a_0**-1 = 0.94486, inverse softplus -> pregamma = log e**gamma - 1 = 0.45264
- pregamma#
- softplus#
- forward(d_scaled: torch.Tensor) torch.Tensor #
- class core.models.gemnet.layers.radial_basis.RadialBasis(num_radial: int, cutoff: float, rbf: dict[str, str] | None = None, envelope: dict[str, str | int] | None = None)#
Bases:
torch.nn.Module
- Parameters:
num_radial (int) – Controls maximum frequency.
cutoff (float) – Cutoff distance in Angstrom.
rbf (dict = {"name": "gaussian"}) – Basis function and its hyperparameters.
envelope (dict = {"name": "polynomial", "exponent": 5}) – Envelope function and its hyperparameters.
- inv_cutoff#
- envelope: PolynomialEnvelope | ExponentialEnvelope#
- forward(d)#