core.models.uma.escn_md#
Copyright (c) Meta Platforms, Inc. and affiliates.
This source code is licensed under the MIT license found in the LICENSE file in the root directory of this source tree.
Attributes#
Classes#
Base class for all neural network modules. |
|
Base class for all neural network modules. |
|
Base class for all neural network modules. |
|
Base class for all neural network modules. |
|
Base class for all neural network modules. |
|
Base class for all neural network modules. |
Functions#
|
Re-compose a tensor from its decomposition |
Module Contents#
- core.models.uma.escn_md.ESCNMD_DEFAULT_EDGE_CHUNK_SIZE#
- class core.models.uma.escn_md.eSCNMDBackbone(max_num_elements: int = 100, sphere_channels: int = 128, lmax: int = 2, mmax: int = 2, grid_resolution: int | None = None, num_sphere_samples: int = 128, otf_graph: bool = False, max_neighbors: int = 300, use_pbc: bool = True, use_pbc_single: bool = True, cutoff: float = 5.0, edge_channels: int = 128, distance_function: str = 'gaussian', num_distance_basis: int = 512, direct_forces: bool = True, regress_forces: bool = True, regress_stress: bool = False, num_layers: int = 2, hidden_channels: int = 128, norm_type: str = 'rms_norm_sh', act_type: str = 'gate', ff_type: str = 'grid', activation_checkpointing: bool = False, chg_spin_emb_type: str = 'pos_emb', cs_emb_grad: bool = False, dataset_emb_grad: bool = False, dataset_list: list[str] | None = None, use_dataset_embedding: bool = True, use_cuda_graph_wigner: bool = False, radius_pbc_version: int = 1, always_use_pbc: bool = True)#
Bases:
torch.nn.Module
,fairchem.core.models.uma.nn.mole_utils.MOLEInterface
Base class for all neural network modules.
Your models should also subclass this class.
Modules can also contain other Modules, allowing them to be nested in a tree structure. You can assign the submodules as regular attributes:
import torch.nn as nn import torch.nn.functional as F class Model(nn.Module): def __init__(self) -> None: super().__init__() self.conv1 = nn.Conv2d(1, 20, 5) self.conv2 = nn.Conv2d(20, 20, 5) def forward(self, x): x = F.relu(self.conv1(x)) return F.relu(self.conv2(x))
Submodules assigned in this way will be registered, and will also have their parameters converted when you call
to()
, etc.Note
As per the example above, an
__init__()
call to the parent class must be made before assignment on the child.- Variables:
training (bool) – Boolean represents whether this module is in training or evaluation mode.
- max_num_elements#
- lmax#
- mmax#
- sphere_channels#
- grid_resolution#
- num_sphere_samples#
- always_use_pbc#
- regress_forces#
- direct_forces#
- regress_stress#
- otf_graph#
- max_neighbors#
- radius_pbc_version#
- enforce_max_neighbors_strictly = False#
- chg_spin_emb_type#
- cs_emb_grad#
- dataset_emb_grad#
- dataset_list#
- use_dataset_embedding#
- use_cuda_graph_wigner#
- sph_feature_size#
- mappingReduced#
- SO3_grid#
- sphere_embedding#
- charge_embedding#
- spin_embedding#
- cutoff#
- edge_channels#
- distance_function#
- num_distance_basis#
- source_embedding#
- target_embedding#
- edge_channels_list#
- edge_degree_embedding#
- num_layers#
- norm_type#
- act_type#
- ff_type#
- blocks#
- norm#
- rot_mat_wigner_cuda = None#
- _get_rotmat_and_wigner(edge_distance_vecs: torch.Tensor, use_cuda_graph: bool)#
- _get_displacement_and_cell(data_dict)#
- csd_embedding(charge, spin, dataset)#
- _generate_graph(data_dict)#
- forward(data_dict) dict[str, torch.Tensor] #
- _init_gp_partitions(graph_dict, atomic_numbers_full)#
Graph Parallel This creates the required partial tensors for each rank given the full tensors. The tensors are split on the dimension along the node index using node_partition.
- property num_params#
- no_weight_decay() set #
- class core.models.uma.escn_md.MLP_EFS_Head(backbone, prefix=None, wrap_property=True)#
Bases:
torch.nn.Module
,fairchem.core.models.base.HeadInterface
Base class for all neural network modules.
Your models should also subclass this class.
Modules can also contain other Modules, allowing them to be nested in a tree structure. You can assign the submodules as regular attributes:
import torch.nn as nn import torch.nn.functional as F class Model(nn.Module): def __init__(self) -> None: super().__init__() self.conv1 = nn.Conv2d(1, 20, 5) self.conv2 = nn.Conv2d(20, 20, 5) def forward(self, x): x = F.relu(self.conv1(x)) return F.relu(self.conv2(x))
Submodules assigned in this way will be registered, and will also have their parameters converted when you call
to()
, etc.Note
As per the example above, an
__init__()
call to the parent class must be made before assignment on the child.- Variables:
training (bool) – Boolean represents whether this module is in training or evaluation mode.
- regress_stress#
- regress_forces#
- prefix#
- wrap_property#
- sphere_channels#
- energy_block#
- forward(data, emb: dict[str, torch.Tensor]) dict[str, torch.Tensor] #
Head forward.
- Parameters:
data (AtomicData) – Atomic systems as input
emb (dict[str->torch.Tensor]) – Embeddings of the input as generated by the backbone
- Returns:
outputs – Return one or more targets generated by this head
- Return type:
dict[str->torch.Tensor]
- class core.models.uma.escn_md.MLP_Energy_Head(backbone, reduce: str = 'sum')#
Bases:
torch.nn.Module
,fairchem.core.models.base.HeadInterface
Base class for all neural network modules.
Your models should also subclass this class.
Modules can also contain other Modules, allowing them to be nested in a tree structure. You can assign the submodules as regular attributes:
import torch.nn as nn import torch.nn.functional as F class Model(nn.Module): def __init__(self) -> None: super().__init__() self.conv1 = nn.Conv2d(1, 20, 5) self.conv2 = nn.Conv2d(20, 20, 5) def forward(self, x): x = F.relu(self.conv1(x)) return F.relu(self.conv2(x))
Submodules assigned in this way will be registered, and will also have their parameters converted when you call
to()
, etc.Note
As per the example above, an
__init__()
call to the parent class must be made before assignment on the child.- Variables:
training (bool) – Boolean represents whether this module is in training or evaluation mode.
- reduce#
- sphere_channels#
- energy_block#
- forward(data_dict, emb: dict[str, torch.Tensor])#
Head forward.
- Parameters:
data (AtomicData) – Atomic systems as input
emb (dict[str->torch.Tensor]) – Embeddings of the input as generated by the backbone
- Returns:
outputs – Return one or more targets generated by this head
- Return type:
dict[str->torch.Tensor]
- class core.models.uma.escn_md.Linear_Energy_Head(backbone, reduce: str = 'sum')#
Bases:
torch.nn.Module
,fairchem.core.models.base.HeadInterface
Base class for all neural network modules.
Your models should also subclass this class.
Modules can also contain other Modules, allowing them to be nested in a tree structure. You can assign the submodules as regular attributes:
import torch.nn as nn import torch.nn.functional as F class Model(nn.Module): def __init__(self) -> None: super().__init__() self.conv1 = nn.Conv2d(1, 20, 5) self.conv2 = nn.Conv2d(20, 20, 5) def forward(self, x): x = F.relu(self.conv1(x)) return F.relu(self.conv2(x))
Submodules assigned in this way will be registered, and will also have their parameters converted when you call
to()
, etc.Note
As per the example above, an
__init__()
call to the parent class must be made before assignment on the child.- Variables:
training (bool) – Boolean represents whether this module is in training or evaluation mode.
- reduce#
- energy_block#
- forward(data_dict, emb: dict[str, torch.Tensor])#
Head forward.
- Parameters:
data (AtomicData) – Atomic systems as input
emb (dict[str->torch.Tensor]) – Embeddings of the input as generated by the backbone
- Returns:
outputs – Return one or more targets generated by this head
- Return type:
dict[str->torch.Tensor]
- class core.models.uma.escn_md.Linear_Force_Head(backbone)#
Bases:
torch.nn.Module
,fairchem.core.models.base.HeadInterface
Base class for all neural network modules.
Your models should also subclass this class.
Modules can also contain other Modules, allowing them to be nested in a tree structure. You can assign the submodules as regular attributes:
import torch.nn as nn import torch.nn.functional as F class Model(nn.Module): def __init__(self) -> None: super().__init__() self.conv1 = nn.Conv2d(1, 20, 5) self.conv2 = nn.Conv2d(20, 20, 5) def forward(self, x): x = F.relu(self.conv1(x)) return F.relu(self.conv2(x))
Submodules assigned in this way will be registered, and will also have their parameters converted when you call
to()
, etc.Note
As per the example above, an
__init__()
call to the parent class must be made before assignment on the child.- Variables:
training (bool) – Boolean represents whether this module is in training or evaluation mode.
- linear#
- forward(data_dict, emb: dict[str, torch.Tensor])#
Head forward.
- Parameters:
data (AtomicData) – Atomic systems as input
emb (dict[str->torch.Tensor]) – Embeddings of the input as generated by the backbone
- Returns:
outputs – Return one or more targets generated by this head
- Return type:
dict[str->torch.Tensor]
- core.models.uma.escn_md.compose_tensor(trace: torch.Tensor, l2_symmetric: torch.Tensor) torch.Tensor #
Re-compose a tensor from its decomposition
- Parameters:
trace – a tensor with scalar part of the decomposition of r2 tensors in the batch
l2_symmetric – tensor with the symmetric/traceless part of decomposition
- Returns:
rank 2 tensor
- Return type:
tensor
- class core.models.uma.escn_md.MLP_Stress_Head(backbone, reduce: str = 'mean')#
Bases:
torch.nn.Module
,fairchem.core.models.base.HeadInterface
Base class for all neural network modules.
Your models should also subclass this class.
Modules can also contain other Modules, allowing them to be nested in a tree structure. You can assign the submodules as regular attributes:
import torch.nn as nn import torch.nn.functional as F class Model(nn.Module): def __init__(self) -> None: super().__init__() self.conv1 = nn.Conv2d(1, 20, 5) self.conv2 = nn.Conv2d(20, 20, 5) def forward(self, x): x = F.relu(self.conv1(x)) return F.relu(self.conv2(x))
Submodules assigned in this way will be registered, and will also have their parameters converted when you call
to()
, etc.Note
As per the example above, an
__init__()
call to the parent class must be made before assignment on the child.- Variables:
training (bool) – Boolean represents whether this module is in training or evaluation mode.
- reduce#
- sphere_channels#
- scalar_block#
- l2_linear#
- forward(data_dict, emb: dict[str, torch.Tensor])#
Head forward.
- Parameters:
data (AtomicData) – Atomic systems as input
emb (dict[str->torch.Tensor]) – Embeddings of the input as generated by the backbone
- Returns:
outputs – Return one or more targets generated by this head
- Return type:
dict[str->torch.Tensor]