core.models.uma.escn_moe#
Copyright (c) Meta Platforms, Inc. and affiliates.
This source code is licensed under the MIT license found in the LICENSE file in the root directory of this source tree.
Classes#
Base class for all neural network modules. |
|
Base class for all neural network modules. |
|
Base class for all neural network modules. |
Module Contents#
- class core.models.uma.escn_moe.eSCNMDMoeBackbone(num_experts: int = 8, moe_dropout: float = 0.0, use_global_embedding: bool = False, use_composition_embedding: bool = False, moe_expert_coefficient_norm: str = 'softmax', act=torch.nn.SiLU, layers_moe=None, moe_layer_type: str = 'pytorch', moe_single: bool = False, moe_type: str = 'so2', **kwargs)#
Bases:
fairchem.core.models.uma.escn_md.eSCNMDBackbone
,fairchem.core.models.uma.nn.mole_utils.MOLEInterface
Base class for all neural network modules.
Your models should also subclass this class.
Modules can also contain other Modules, allowing them to be nested in a tree structure. You can assign the submodules as regular attributes:
import torch.nn as nn import torch.nn.functional as F class Model(nn.Module): def __init__(self) -> None: super().__init__() self.conv1 = nn.Conv2d(1, 20, 5) self.conv2 = nn.Conv2d(20, 20, 5) def forward(self, x): x = F.relu(self.conv1(x)) return F.relu(self.conv2(x))
Submodules assigned in this way will be registered, and will also have their parameters converted when you call
to()
, etc.Note
As per the example above, an
__init__()
call to the parent class must be made before assignment on the child.- Variables:
training (bool) – Boolean represents whether this module is in training or evaluation mode.
- parent_kwargs#
- num_experts#
- merge_MOLE_model(data)#
- set_MOLE_coefficients(atomic_numbers_full, batch_full, csd_mixed_emb)#
- set_MOLE_sizes(nsystems, batch_full, edge_index)#
- log_MOLE_stats()#
- class core.models.uma.escn_moe.DatasetSpecificMoEWrapper(backbone, dataset_names, head_cls, wrap_property=True, head_kwargs=None)#
Bases:
torch.nn.Module
,fairchem.core.models.base.HeadInterface
Base class for all neural network modules.
Your models should also subclass this class.
Modules can also contain other Modules, allowing them to be nested in a tree structure. You can assign the submodules as regular attributes:
import torch.nn as nn import torch.nn.functional as F class Model(nn.Module): def __init__(self) -> None: super().__init__() self.conv1 = nn.Conv2d(1, 20, 5) self.conv2 = nn.Conv2d(20, 20, 5) def forward(self, x): x = F.relu(self.conv1(x)) return F.relu(self.conv2(x))
Submodules assigned in this way will be registered, and will also have their parameters converted when you call
to()
, etc.Note
As per the example above, an
__init__()
call to the parent class must be made before assignment on the child.- Variables:
training (bool) – Boolean represents whether this module is in training or evaluation mode.
- regress_stress#
- regress_forces#
- wrap_property#
- dataset_names#
- dataset_name_to_exp#
- head#
- global_mole_tensors#
- forward(data, emb: dict[str, torch.Tensor]) dict[str, torch.Tensor] #
Head forward.
- Parameters:
data (AtomicData) – Atomic systems as input
emb (dict[str->torch.Tensor]) – Embeddings of the input as generated by the backbone
- Returns:
outputs – Return one or more targets generated by this head
- Return type:
dict[str->torch.Tensor]
- class core.models.uma.escn_moe.DatasetSpecificSingleHeadWrapper(backbone, dataset_names, head_cls, wrap_property=True, head_kwargs=None)#
Bases:
torch.nn.Module
,fairchem.core.models.base.HeadInterface
Base class for all neural network modules.
Your models should also subclass this class.
Modules can also contain other Modules, allowing them to be nested in a tree structure. You can assign the submodules as regular attributes:
import torch.nn as nn import torch.nn.functional as F class Model(nn.Module): def __init__(self) -> None: super().__init__() self.conv1 = nn.Conv2d(1, 20, 5) self.conv2 = nn.Conv2d(20, 20, 5) def forward(self, x): x = F.relu(self.conv1(x)) return F.relu(self.conv2(x))
Submodules assigned in this way will be registered, and will also have their parameters converted when you call
to()
, etc.Note
As per the example above, an
__init__()
call to the parent class must be made before assignment on the child.- Variables:
training (bool) – Boolean represents whether this module is in training or evaluation mode.
- regress_stress#
- regress_forces#
- wrap_property#
- dataset_names#
- head#
- forward(data, emb: dict[str, torch.Tensor]) dict[str, torch.Tensor] #
Head forward.
- Parameters:
data (AtomicData) – Atomic systems as input
emb (dict[str->torch.Tensor]) – Embeddings of the input as generated by the backbone
- Returns:
outputs – Return one or more targets generated by this head
- Return type:
dict[str->torch.Tensor]