core.models.uma.nn.radial#
Copyright (c) Meta Platforms, Inc. and affiliates.
This source code is licensed under the MIT license found in the LICENSE file in the root directory of this source tree.
Classes#
Polynomial envelope function that ensures a smooth cutoff. |
|
Base class for all neural network modules. |
|
Contruct a radial function (linear layers + layer normalization + SiLU) given a list of channels |
Functions#
|
Module Contents#
- core.models.uma.nn.radial.gaussian(x: torch.Tensor, mean, std) torch.Tensor #
- class core.models.uma.nn.radial.PolynomialEnvelope(exponent: int = 5)#
Bases:
torch.nn.Module
Polynomial envelope function that ensures a smooth cutoff.
- p: float#
- a: float#
- b: float#
- c: float#
- forward(d_scaled: torch.Tensor) torch.Tensor #
- class core.models.uma.nn.radial.GaussianSmearing(start: float = -5.0, stop: float = 5.0, num_gaussians: int = 50, basis_width_scalar: float = 1.0)#
Bases:
torch.nn.Module
Base class for all neural network modules.
Your models should also subclass this class.
Modules can also contain other Modules, allowing them to be nested in a tree structure. You can assign the submodules as regular attributes:
import torch.nn as nn import torch.nn.functional as F class Model(nn.Module): def __init__(self) -> None: super().__init__() self.conv1 = nn.Conv2d(1, 20, 5) self.conv2 = nn.Conv2d(20, 20, 5) def forward(self, x): x = F.relu(self.conv1(x)) return F.relu(self.conv2(x))
Submodules assigned in this way will be registered, and will also have their parameters converted when you call
to()
, etc.Note
As per the example above, an
__init__()
call to the parent class must be made before assignment on the child.- Variables:
training (bool) – Boolean represents whether this module is in training or evaluation mode.
- num_output#
- coeff#
- forward(dist) torch.Tensor #