core.models.utils.basis#
Copyright (c) Meta, Inc. and its affiliates.
This source code is licensed under the MIT license found in the LICENSE file in the root directory of this source tree.
Classes#
Base class for all neural network modules. |
|
Base class for all neural network modules. |
|
Base class for all neural network modules. |
|
Base class for all neural network modules. |
|
Base class for all neural network modules. |
|
Base class for all neural network modules. |
|
Base class for all neural network modules. |
Module Contents#
- class core.models.utils.basis.Sine(w0: float = 30.0)#
Bases:
torch.nn.Module
Base class for all neural network modules.
Your models should also subclass this class.
Modules can also contain other Modules, allowing to nest them in a tree structure. You can assign the submodules as regular attributes:
import torch.nn as nn import torch.nn.functional as F class Model(nn.Module): def __init__(self): super().__init__() self.conv1 = nn.Conv2d(1, 20, 5) self.conv2 = nn.Conv2d(20, 20, 5) def forward(self, x): x = F.relu(self.conv1(x)) return F.relu(self.conv2(x))
Submodules assigned in this way will be registered, and will have their parameters converted too when you call
to()
, etc.Note
As per the example above, an
__init__()
call to the parent class must be made before assignment on the child.- Variables:
training (bool) – Boolean represents whether this module is in training or evaluation mode.
- w0#
- forward(x: torch.Tensor) torch.Tensor #
- class core.models.utils.basis.SIREN(layers: list[int], num_in_features: int, out_features: int, w0: float = 30.0, initializer: str | None = 'siren', c: float = 6)#
Bases:
torch.nn.Module
Base class for all neural network modules.
Your models should also subclass this class.
Modules can also contain other Modules, allowing to nest them in a tree structure. You can assign the submodules as regular attributes:
import torch.nn as nn import torch.nn.functional as F class Model(nn.Module): def __init__(self): super().__init__() self.conv1 = nn.Conv2d(1, 20, 5) self.conv2 = nn.Conv2d(20, 20, 5) def forward(self, x): x = F.relu(self.conv1(x)) return F.relu(self.conv2(x))
Submodules assigned in this way will be registered, and will have their parameters converted too when you call
to()
, etc.Note
As per the example above, an
__init__()
call to the parent class must be made before assignment on the child.- Variables:
training (bool) – Boolean represents whether this module is in training or evaluation mode.
- layers#
- network#
- forward(X: torch.Tensor) torch.Tensor #
- class core.models.utils.basis.SINESmearing(num_in_features: int, num_freqs: int = 40, use_cosine: bool = False)#
Bases:
torch.nn.Module
Base class for all neural network modules.
Your models should also subclass this class.
Modules can also contain other Modules, allowing to nest them in a tree structure. You can assign the submodules as regular attributes:
import torch.nn as nn import torch.nn.functional as F class Model(nn.Module): def __init__(self): super().__init__() self.conv1 = nn.Conv2d(1, 20, 5) self.conv2 = nn.Conv2d(20, 20, 5) def forward(self, x): x = F.relu(self.conv1(x)) return F.relu(self.conv2(x))
Submodules assigned in this way will be registered, and will have their parameters converted too when you call
to()
, etc.Note
As per the example above, an
__init__()
call to the parent class must be made before assignment on the child.- Variables:
training (bool) – Boolean represents whether this module is in training or evaluation mode.
- num_freqs#
- out_dim: int#
- use_cosine#
- freq_filter#
- forward(x: torch.Tensor) torch.Tensor #
- class core.models.utils.basis.GaussianSmearing(num_in_features: int, start: int = 0, end: int = 1, num_freqs: int = 50)#
Bases:
torch.nn.Module
Base class for all neural network modules.
Your models should also subclass this class.
Modules can also contain other Modules, allowing to nest them in a tree structure. You can assign the submodules as regular attributes:
import torch.nn as nn import torch.nn.functional as F class Model(nn.Module): def __init__(self): super().__init__() self.conv1 = nn.Conv2d(1, 20, 5) self.conv2 = nn.Conv2d(20, 20, 5) def forward(self, x): x = F.relu(self.conv1(x)) return F.relu(self.conv2(x))
Submodules assigned in this way will be registered, and will have their parameters converted too when you call
to()
, etc.Note
As per the example above, an
__init__()
call to the parent class must be made before assignment on the child.- Variables:
training (bool) – Boolean represents whether this module is in training or evaluation mode.
- num_freqs#
- coeff: float#
- offset#
- forward(x: torch.Tensor) torch.Tensor #
- class core.models.utils.basis.FourierSmearing(num_in_features: int, num_freqs: int = 40, use_cosine: bool = False)#
Bases:
torch.nn.Module
Base class for all neural network modules.
Your models should also subclass this class.
Modules can also contain other Modules, allowing to nest them in a tree structure. You can assign the submodules as regular attributes:
import torch.nn as nn import torch.nn.functional as F class Model(nn.Module): def __init__(self): super().__init__() self.conv1 = nn.Conv2d(1, 20, 5) self.conv2 = nn.Conv2d(20, 20, 5) def forward(self, x): x = F.relu(self.conv1(x)) return F.relu(self.conv2(x))
Submodules assigned in this way will be registered, and will have their parameters converted too when you call
to()
, etc.Note
As per the example above, an
__init__()
call to the parent class must be made before assignment on the child.- Variables:
training (bool) – Boolean represents whether this module is in training or evaluation mode.
- num_freqs#
- out_dim: int#
- use_cosine#
- freq_filter#
- forward(x: torch.Tensor) torch.Tensor #
- class core.models.utils.basis.Basis(num_in_features: int, num_freqs: int = 50, basis_type: str = 'powersine', act: str = 'ssp', sph: SphericalSmearing | None = None)#
Bases:
torch.nn.Module
Base class for all neural network modules.
Your models should also subclass this class.
Modules can also contain other Modules, allowing to nest them in a tree structure. You can assign the submodules as regular attributes:
import torch.nn as nn import torch.nn.functional as F class Model(nn.Module): def __init__(self): super().__init__() self.conv1 = nn.Conv2d(1, 20, 5) self.conv2 = nn.Conv2d(20, 20, 5) def forward(self, x): x = F.relu(self.conv1(x)) return F.relu(self.conv2(x))
Submodules assigned in this way will be registered, and will have their parameters converted too when you call
to()
, etc.Note
As per the example above, an
__init__()
call to the parent class must be made before assignment on the child.- Variables:
training (bool) – Boolean represents whether this module is in training or evaluation mode.
- smearing: SINESmearing | FourierSmearing | GaussianSmearing | torch.nn.Sequential#
- num_freqs#
- basis_type#
- forward(x: torch.Tensor, edge_attr_sph: torch.Tensor | None = None)#
- class core.models.utils.basis.SphericalSmearing(max_n: int = 10, option: str = 'all')#
Bases:
torch.nn.Module
Base class for all neural network modules.
Your models should also subclass this class.
Modules can also contain other Modules, allowing to nest them in a tree structure. You can assign the submodules as regular attributes:
import torch.nn as nn import torch.nn.functional as F class Model(nn.Module): def __init__(self): super().__init__() self.conv1 = nn.Conv2d(1, 20, 5) self.conv2 = nn.Conv2d(20, 20, 5) def forward(self, x): x = F.relu(self.conv1(x)) return F.relu(self.conv2(x))
Submodules assigned in this way will be registered, and will have their parameters converted too when you call
to()
, etc.Note
As per the example above, an
__init__()
call to the parent class must be made before assignment on the child.- Variables:
training (bool) – Boolean represents whether this module is in training or evaluation mode.
- m: numpy.typing.NDArray[numpy.int_]#
- n: numpy.typing.NDArray[numpy.int_]#
- max_n#
- out_dim#
- forward(xyz: torch.Tensor) torch.Tensor #