core.models.escaip.EScAIP#
Classes#
Efficiently Scaled Attention Interactomic Potential (EScAIP) backbone model. |
|
Base class for all neural network modules. |
|
Base class for all neural network modules. |
|
Base class for all neural network modules. |
|
Do not support torch.compile |
Module Contents#
- class core.models.escaip.EScAIP.EScAIPBackbone(**kwargs)#
Bases:
torch.nn.Module
,fairchem.core.models.base.BackboneInterface
Efficiently Scaled Attention Interactomic Potential (EScAIP) backbone model.
- global_cfg#
- molecular_graph_cfg#
- gnn_cfg#
- reg_cfg#
- regress_forces#
- direct_forces#
- regress_stress#
- dataset_list#
- max_num_elements#
- max_neighbors#
- cutoff#
- data_preprocess#
- input_block#
- transformer_blocks#
- readout_layers#
- output_projection#
- compiled_forward(data: fairchem.core.models.escaip.custom_types.GraphAttentionData)#
- forward(data: fairchem.core.datasets.atomic_data.AtomicData)#
Backbone forward.
- Parameters:
data (AtomicData) – Atomic systems as input
- Returns:
embedding – Return backbone embeddings for the given input
- Return type:
dict[str->torch.Tensor]
- no_weight_decay()#
- init_weights()#
- class core.models.escaip.EScAIP.EScAIPHeadBase(backbone: EScAIPBackbone)#
Bases:
torch.nn.Module
,fairchem.core.models.base.HeadInterface
Base class for all neural network modules.
Your models should also subclass this class.
Modules can also contain other Modules, allowing them to be nested in a tree structure. You can assign the submodules as regular attributes:
import torch.nn as nn import torch.nn.functional as F class Model(nn.Module): def __init__(self) -> None: super().__init__() self.conv1 = nn.Conv2d(1, 20, 5) self.conv2 = nn.Conv2d(20, 20, 5) def forward(self, x): x = F.relu(self.conv1(x)) return F.relu(self.conv2(x))
Submodules assigned in this way will be registered, and will also have their parameters converted when you call
to()
, etc.Note
As per the example above, an
__init__()
call to the parent class must be made before assignment on the child.- Variables:
training (bool) – Boolean represents whether this module is in training or evaluation mode.
- global_cfg#
- molecular_graph_cfg#
- gnn_cfg#
- reg_cfg#
- regress_forces#
- direct_forces#
- post_init(gain=1.0)#
- no_weight_decay()#
- class core.models.escaip.EScAIP.EScAIPDirectForceHead(backbone: EScAIPBackbone)#
Bases:
EScAIPHeadBase
Base class for all neural network modules.
Your models should also subclass this class.
Modules can also contain other Modules, allowing them to be nested in a tree structure. You can assign the submodules as regular attributes:
import torch.nn as nn import torch.nn.functional as F class Model(nn.Module): def __init__(self) -> None: super().__init__() self.conv1 = nn.Conv2d(1, 20, 5) self.conv2 = nn.Conv2d(20, 20, 5) def forward(self, x): x = F.relu(self.conv1(x)) return F.relu(self.conv2(x))
Submodules assigned in this way will be registered, and will also have their parameters converted when you call
to()
, etc.Note
As per the example above, an
__init__()
call to the parent class must be made before assignment on the child.- Variables:
training (bool) – Boolean represents whether this module is in training or evaluation mode.
- force_direction_layer#
- force_magnitude_layer#
- node_norm#
- edge_norm#
- compiled_forward(edge_features, node_features, data: fairchem.core.models.escaip.custom_types.GraphAttentionData)#
- forward(data, emb: dict[str, torch.Tensor]) dict[str, torch.Tensor] #
Head forward.
- Parameters:
data (AtomicData) – Atomic systems as input
emb (dict[str->torch.Tensor]) – Embeddings of the input as generated by the backbone
- Returns:
outputs – Return one or more targets generated by this head
- Return type:
dict[str->torch.Tensor]
- class core.models.escaip.EScAIP.EScAIPEnergyHead(backbone: EScAIPBackbone)#
Bases:
EScAIPHeadBase
Base class for all neural network modules.
Your models should also subclass this class.
Modules can also contain other Modules, allowing them to be nested in a tree structure. You can assign the submodules as regular attributes:
import torch.nn as nn import torch.nn.functional as F class Model(nn.Module): def __init__(self) -> None: super().__init__() self.conv1 = nn.Conv2d(1, 20, 5) self.conv2 = nn.Conv2d(20, 20, 5) def forward(self, x): x = F.relu(self.conv1(x)) return F.relu(self.conv2(x))
Submodules assigned in this way will be registered, and will also have their parameters converted when you call
to()
, etc.Note
As per the example above, an
__init__()
call to the parent class must be made before assignment on the child.- Variables:
training (bool) – Boolean represents whether this module is in training or evaluation mode.
- energy_layer#
- energy_reduce#
- use_global_readout#
- node_norm#
- compiled_forward(emb)#
- forward(data, emb: dict[str, torch.Tensor]) dict[str, torch.Tensor] #
Head forward.
- Parameters:
data (AtomicData) – Atomic systems as input
emb (dict[str->torch.Tensor]) – Embeddings of the input as generated by the backbone
- Returns:
outputs – Return one or more targets generated by this head
- Return type:
dict[str->torch.Tensor]
- class core.models.escaip.EScAIP.EScAIPGradientEnergyForceStressHead(backbone: EScAIPBackbone, prefix: str | None = None, wrap_property: bool = True)#
Bases:
EScAIPEnergyHead
Do not support torch.compile
- regress_stress#
- regress_forces#
- prefix#
- wrap_property#
- forward(data, emb: dict[str, torch.Tensor]) dict[str, torch.Tensor] #
Head forward.
- Parameters:
data (AtomicData) – Atomic systems as input
emb (dict[str->torch.Tensor]) – Embeddings of the input as generated by the backbone
- Returns:
outputs – Return one or more targets generated by this head
- Return type:
dict[str->torch.Tensor]