core.models.escaip.configs

Contents

core.models.escaip.configs#

Classes#

Functions#

resolve_type_hint(cls, field)

Resolves forward reference type hints from string to actual class objects.

init_configs(cls, kwargs)

Initialize a dataclass with the given kwargs.

Module Contents#

class core.models.escaip.configs.GlobalConfigs#
regress_forces: bool#
direct_forces: bool#
hidden_size: int#
num_layers: int#
activation: Literal['squared_relu', 'gelu', 'leaky_relu', 'relu', 'smelu', 'star_relu'] = 'gelu'#
regress_stress: bool = False#
use_compile: bool = True#
use_padding: bool = True#
use_fp16_backbone: bool = False#
dataset_list: list#
class core.models.escaip.configs.MolecularGraphConfigs#
use_pbc: bool#
max_num_elements: int#
max_atoms: int#
max_batch_size: int#
max_radius: float#
knn_k: int#
knn_soft: bool#
knn_sigmoid_scale: float#
knn_lse_scale: float#
knn_use_low_mem: bool#
knn_pad_size: int#
distance_function: Literal['gaussian', 'sigmoid', 'linearsigmoid', 'silu'] = 'gaussian'#
use_envelope: bool = True#
class core.models.escaip.configs.GraphNeuralNetworksConfigs#
atten_name: Literal['math', 'memory_efficient', 'flash']#
atten_num_heads: int#
atom_embedding_size: int = 128#
node_direction_embedding_size: int = 64#
node_direction_expansion_size: int = 10#
edge_distance_expansion_size: int = 600#
edge_distance_embedding_size: int = 512#
readout_hidden_layer_multiplier: int = 2#
output_hidden_layer_multiplier: int = 2#
ffn_hidden_layer_multiplier: int = 2#
use_angle_embedding: Literal['scalar', 'bias', 'none'] = 'none'#
angle_expansion_size: int = 10#
angle_embedding_size: int = 8#
use_graph_attention: bool = False#
use_message_gate: bool = False#
use_global_readout: bool = False#
use_frequency_embedding: bool = True#
freequency_list: list#
energy_reduce: Literal['sum', 'mean'] = 'sum'#
class core.models.escaip.configs.RegularizationConfigs#
normalization: Literal['layernorm', 'rmsnorm', 'skip'] = 'rmsnorm'#
mlp_dropout: float = 0.0#
atten_dropout: float = 0.0#
stochastic_depth_prob: float = 0.0#
node_ffn_dropout: float = 0.0#
edge_ffn_dropout: float = 0.0#
scalar_output_dropout: float = 0.0#
vector_output_dropout: float = 0.0#
class core.models.escaip.configs.EScAIPConfigs#
global_cfg: GlobalConfigs#
molecular_graph_cfg: MolecularGraphConfigs#
gnn_cfg: GraphNeuralNetworksConfigs#
reg_cfg: RegularizationConfigs#
core.models.escaip.configs.resolve_type_hint(cls, field)#

Resolves forward reference type hints from string to actual class objects.

core.models.escaip.configs.init_configs(cls, kwargs)#

Initialize a dataclass with the given kwargs.