core.models.escaip.modules.output_block#
Classes#
Base class for all neural network modules. |
|
Get the final prediction from the readouts (force or energy) |
Module Contents#
- class core.models.escaip.modules.output_block.OutputProjection(global_cfg: fairchem.core.models.escaip.configs.GlobalConfigs, gnn_cfg: fairchem.core.models.escaip.configs.GraphNeuralNetworksConfigs, reg_cfg: fairchem.core.models.escaip.configs.RegularizationConfigs)#
Bases:
torch.nn.Module
Base class for all neural network modules.
Your models should also subclass this class.
Modules can also contain other Modules, allowing them to be nested in a tree structure. You can assign the submodules as regular attributes:
import torch.nn as nn import torch.nn.functional as F class Model(nn.Module): def __init__(self) -> None: super().__init__() self.conv1 = nn.Conv2d(1, 20, 5) self.conv2 = nn.Conv2d(20, 20, 5) def forward(self, x): x = F.relu(self.conv1(x)) return F.relu(self.conv2(x))
Submodules assigned in this way will be registered, and will also have their parameters converted when you call
to()
, etc.Note
As per the example above, an
__init__()
call to the parent class must be made before assignment on the child.- Variables:
training (bool) – Boolean represents whether this module is in training or evaluation mode.
- use_edge_readout#
- use_global_readout#
- node_projection#
- output_norm_node#
- forward(data, global_readouts, node_readouts, edge_readouts)#
- class core.models.escaip.modules.output_block.OutputLayer(global_cfg: fairchem.core.models.escaip.configs.GlobalConfigs, gnn_cfg: fairchem.core.models.escaip.configs.GraphNeuralNetworksConfigs, reg_cfg: fairchem.core.models.escaip.configs.RegularizationConfigs, output_type: Literal['Vector', 'Scalar'])#
Bases:
torch.nn.Module
Get the final prediction from the readouts (force or energy)
- output_type#
- ffn#
- final_output#
- forward(features: torch.Tensor) torch.Tensor #
features: features from the backbone Shape ([num_nodes, hidden_size] or [num_nodes, max_neighbor, hidden_size])